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Quasi-phase-matched interactions in waveguides with quadratic nonlinearities enable highly efficient nonlinear fre-
quency conversion. In this paper, we demonstrate the first generation of devices that combine the dispersion engineering
available in nanophotonic waveguides with quasi-phase-matched nonlinear interactions available in periodically poled
lithium niobate (PPLN). This combination enables quasi-static interactions of femtosecond pulses, reducing the pulse
energy requirements by several orders of magnitude compared to conventional devices, from picojoules to femtojoules.
We experimentally demonstrate two effects associated with second harmonic generation (SHG). First, we observe effi-
cient quasi-phase-matched SHG with<100 fJ of pulse energy. Second, in the limit of strong phase-mismatch, we observe
spectral broadening of both harmonics with as little as 2 pJ of pulse energy. These results lay a foundation for a new class
of nonlinear devices, in which coengineering of dispersion with quasi-phase-matching enables efficient nonlinear optics
at the femtojoule level. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Phase-matched interactions in materials with quadratic (χ (2))
nonlinearities are crucial for realizing efficient second harmonic
generation (SHG), sum- and difference-frequency generation, and
optical parametric amplification. These dynamical processes are
used as building blocks in many modern optical systems, including
near- and mid-infrared light generation [1,2], ultrashort pulse
compression [3], supercontinuum generation [4], frequency
comb stabilization [5], upconversion detection and quantum
frequency conversion [6], all-optical signal processing [7], coher-
ent Ising machines [8], and the generation of nonclassical states
of light [9]. Weakly guiding diffused waveguides in periodically
poled ferroelectrics like lithium niobate [10], lithium tantalite
[11], and potassium titanyl phosphate [12] are a commonly used
platform for such devices. These waveguides are conventionally
formed by a small refractive index modulation (1n ∼ 0.02) due
to indiffused dopants and exhibit low-loss (∼0.1 dB/cm) modes
with field diameters of ∼5 µm and quasi-phase-matched inter-
actions between these modes through periodic poling of the χ (2)

coefficient. To date, these devices have suffered largely from two
limitations. The power requirements of such devices are set by the
largest achievable normalized efficiencies (90%/W-cm2 for SHG

of 1560-nm light [7]), and the phase-matching bandwidths (and
hence useful lengths for pulsed interactions) have ultimately been
limited by the material dispersion that dominates over geometrical
dispersion in weakly guiding waveguides.

Recent efforts have focused on the development of χ (2)

nanophotonics in platforms such as lithium niobate [13], alu-
minum nitride [14], and gallium arsenide [15]. These systems
allow for densely integrated nonlinear photonic devices and
achieve efficient frequency conversion due to the large field inten-
sities associated with subwavelength mode confinement. The
current state of the art of χ (2) nanophotonic devices comprises
two approaches: modal phase-matching, using the geomet-
ric dependence of the phase velocity of TE and TM modes
[15–17], and quasi-phase-matching, using waveguides with
periodically poled χ (2) nonlinearities [1,18]. While modal phase-
matching has achieved the largest normalized efficiencies to date
(13, 000%/W-cm2 [15]), the waveguide geometry is determined
by the conditions in which the phase velocity of the fundamental
and second harmonic are matched. These constraints are lifted in
quasi-phase-matched waveguides, where the waveguide geometry
may be chosen to engineer both the group velocity and the group-
velocity dispersion of the interacting waves. The poling period
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necessary for quasi-phase-matched interactions is then deter-
mined by the phase-velocity mismatch in the chosen waveguide
geometry. While engineering of these dispersion orders is often
done in centrosymmetric waveguides, where the relative sign of
the group velocity dispersion and χ (3) nonlinearity can be cho-
sen to achieve soliton formation and spectral broadening [5], to
date there has been no demonstration of dispersion-engineered
quasi-phase-matchedχ (2) interactions.

In this work we use direct-etched nanophotonic PPLN ridge
waveguides to provide the first experimental demonstration
of ultrabroadband quasi-phase-matched χ (2) interactions in a
dispersion-engineered waveguide. This paper will proceed in
three parts: i) we briefly summarize the design and fabrication of
nanophotonic PPLN waveguides; ii) we experimentally demon-
strate SHG in a dispersion-engineered PPLN waveguide; and
iii) we experimentally demonstrate multioctave supercontinuum
generation in a phase-mismatched PPLN waveguide. The devices
shown in Section 2, which have been designed for broadband SHG
of wavelengths around 2-µm, exhibit SHG transfer functions
with 3-dB bandwidths of> 110 nm and achieve a saturated SHG
conversion efficiency in excess of 50% with pulse energies as low as
60 fJ when pumped with 50-fs-long pulses centered around 2 µm.
The bandwidth and energy requirements of these waveguides
represent an improvement over conventional waveguides by 10×
and 30×, respectively. In Section 3, we choose the poling period
of these waveguides for phase-mismatched SHG, which leads to
self-phase modulation with an effective nonlinearity more than 2
orders of magnitude larger than the pure electronic χ (3) of lithium
niobate. When such a waveguide is driven with pulse energies in
excess of 1 pJ it exhibits a cascade of mixing processes, resulting in
the generation and spectral broadening of the first five harmonics.
The techniques demonstrated here can be generalized to engineer
the transfer functions and interaction lengths of any three-wave
interaction based on χ (2) nonlinearities and will allow for many of
the dynamical processes used in conventional PPLN devices to be
scaled to substantially lower pulse energies.

2. NANOPHOTONIC PPLN WAVEGUIDES

We begin by describing the design and fabrication of nanophotonic
PPLN waveguides. A cross-section of a typical ridge waveguide is
shown in Fig. 1(a), with the simulated TE00 modal field ampli-
tude of the fundamental and second harmonic, respectively. We
consider a 700-nm x-cut thin film and examine the roles of etch
depth and waveguide width on the performance of the waveguide.
For continuous-wave (CW) interactions, the relevant parameters
are the poling period needed to achieve phase-matching, and the
effective strength of the interaction. The required poling period for
SHG is given by3= λ/(2n2ω − 2nω), where λ is the wavelength
of the fundamental, and nω,2ω is the effective index of the fun-
damental and second harmonic modes, respectively. The poling
period is shown as a function of waveguide geometry in Fig. 1(b)
and exhibits a linear scaling in width and etch depth, with larger
waveguides having larger poling periods. The typical measure of
nonlinearity is the normalized efficiency, η0, which specifies the
efficiency for phase-matched, undepleted, CW SHG in a nonlin-
ear waveguide as P2ω/Pω = η0 PωL2. η0 is shown in Fig. 1(c) and
scales with the inverse of the area of the waveguide modes,

η0 =
2ω2d2

eff

n2
ωn2ωε0c 3 Aeff
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Fig. 1. (a) Waveguide cross-section, showing the normalized electric
field associated with the simulated TE00 fundamental (left) and second
harmonic (right) modes. The waveguides shown here correspond to
a top width of 1850 nm, an etch depth of 340 nm, and a starting film
thickness of 700 nm. (b) and (c) Simulated poling period and normalized
efficiency, respectively, as a function of waveguide geometry. (d) and
(e) Simulated 1k ′ and k ′′ω, respectively. The solid black lines denote
1k ′ = 0, and the dashed black contour line shows geometries that achieve
|1k ′|< 5 fs/mm.

where deff =
2
π

d33 is the effective nonlinear coefficient for quasi-
phase-matched interactions that have been poled with a 50% duty
cycle and d33 = 20.5 pm/V for SHG of 2050-nm light. This value
is found using a least squares fit to the values reported in [19,20]
extrapolated to 2µm with constant Miller’s delta scaling. Aeff is the
effective area of the interaction and is 1.6 µm2 for SHG between
the modes shown in Fig. 1(a). For a detailed description of the
modal overlap integral involved in computing the effective area, we
refer the reader to the supplemental.

The role of dispersion will be discussed in more detail in the
following sections. We note, for completeness that the bandwidth
of nonlinear interactions is usually dominated by mismatch of the
inverse group velocities of the interacting waves, hereafter referred
to as the temporal walkoff or a group velocity mismatch, 1k′. In
the absence of the temporal walkoff, the group velocity dispersion
of the fundamental, k′′ω, plays a dominant role. 1k′ and k′′ω are
shown in Fig. 1(d) and Fig. 1(e), respectively. Temporal walkoff
becomes negligible for etch depths > 350-nm, and anomalous
dispersion occurs at wavelengths around 2050 nm for etch depths
> 330-nm.

We conclude this section by briefly summarizing the fabrication
of the nanophotonic PPLN waveguides used for the remain-
der of this paper. First, periodic poling is done as described in
[1]. Here, metal electrodes are deposited and patterned on an
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Fig. 2. (a) Schematic of the poling process, resulting in high fidelity
domain inversion with a∼50% duty cycle. (b) Waveguides are patterned
using an Ar+ assisted dry etch, resulting in smooth sidewalls. (c) The
samples are prepared using laser dicing, resulting in optical-quality
end-facets.

x-cut magnesium-oxide (MgO)-doped lithium niobate thin film
(NANOLN). Then, several high voltage pulses are applied to the
electrodes, resulting in periodic domain inversions [Fig. 2(a)].
The inset shows a colorized two-photon microscope image of the
resulting inverted domains with a duty cycle of ∼50%. Second,
waveguides are patterned using electron-beam lithography and dry
etched using Ar+ ions, as described in Ref. [13]. This process yields
low-loss (< 0.1-dB/cm) ridge waveguides [Fig. 2(b)]. The inset
shows a scanning electron microscope (SEM) image of the ridge
waveguides, showing smooth sidewalls. Finally, facet preparation is
done using a DISCO DFL7340 laser saw [Fig. 2(c)]. Here,∼10-µJ
pulses are focused into the substrate to create a periodic array of
damage spots, which act as nucleation sites for crack propagation.
The sample is then cleaved. The inset shows an SEM image of the
resulting end-facets, which exhibit∼10-nm facet roughness.

Using these methods, we fabricated 45 6-mm-long waveguides
corresponding to three different top widths and 15 poling periods
ranging from 5.01-µm to 5.15-µm. We chose the 10-nm shift
between consecutive poling periods to correspond to a shift of
1kL by 2π and use temperature for fine tuning of the phase-
mismatch. The yield for poling and waveguide fabrication was
50% and 90%, respectively, and the coupling efficiency varied
from 0.03% to 1% depending on the quality of the end-facet,
with 10% of the waveguides exhibiting facet damage. We note
here that theoretical coupling efficiencies in excess of 30% are
possible with the NA= 0.5 optics used throughout this paper and
that further refinements of both the facet preparation recipe and
the incoupled Gaussian beam have yielded devices with coupling
efficiencies commensurate with theory. For the remainder of this
paper we will report pulse energies internal to the waveguide and
focus on waveguides with a top width of ∼1850 nm and an etch
depth of ∼340 nm, which achieve phase-matching near a period
of 5.11-µm. The resulting theoretical normalized efficiency is
1100%/W-cm2, 1k′ = 5-fs/mm, and k′′ω =−15-fs2

/mm. The
calculated value of1k′ is 20 times smaller than that of bulk lithium

niobate for 2-µm doubling, which allows for substantially longer
interaction lengths for femtosecond pulses.

3. SECOND HARMONIC GENERATION

In this section we discuss SHG of femtosecond pulses in a
nanophotonic PPLN waveguide. We begin by explaining the
role of dispersion engineering in phase-matched interactions, and
how ultrabroadband phase-matched interactions become possible
with a suitable choice of waveguide geometry. Then, we describe an
experimental demonstration of SHG in a dispersion-engineered
PPLN waveguide. The performance of these waveguides, as char-
acterized by the SHG transfer function and normalized efficiency,
agrees well with theory and represents an improvement over the
performance of conventional PPLN devices, in terms of both
bandwidth and normalized efficiency, by more than an order of
magnitude.

The coupled wave equations for SHG of an ultrafast pulse are

∂z Aω(z, t)=−iκ A2ωA∗ω exp(−i1kz)+ D̂ωAω, (2a)

∂z A2ω(z, t)=−iκ A2
ω exp(i1kz)−1k′∂t A2ω + D̂2ωA2ω,

(2b)

where Aω and A2ω are the complex amplitudes of the modal fields,
normalized so that |A(z, t)|2 is the instantaneous power at position
z. κ is the nonlinear coupling, κ =

√
η0, and1k is the phase mis-

match between the carrier frequencies,1k = k2ω − 2kω − 2π/3.
The dispersion operator, D̂ω =

∑
∞

j=2[(−i) j+1k( j )
ω / j !]∂ j

t , con-

tains contributions beyond the first order, where k( j )
ω represents the

j th derivative of propagation constant k at frequencyω.
For SHG in the limit where the fundamental wave is unde-

pleted, these equations may be solved using a transfer function
approach [21,22]. Here, the response of the second harmonic to
the driving nonlinear polarization is computed by filtering the
driving polarization with the transfer function for CW SHG.
We implement this approach analytically in two steps. First, we
calculate the second harmonic envelope that would be generated in
the absence of dispersion, AND

2ω (z, t)=−iκ A2
ω(0, t)z. Then, the

power spectral density associated with this envelope is filtered in
the frequency domain, using the CW transfer function for SHG,

|A2ω(z, �)|2 = sinc2(1k(�)z/2)|AND
2ω (z, �)|

2. (3)

Here, A2ω(z, �)=F{A2ω(z, t)}(�) is the Fourier transform
of A2ω(z, t), and � is the frequency detuning around 2ω. The
dispersion of a nonlinear waveguide modifies the bandwidth of
the SHG transfer function through the frequency dependence of
1k(�)= k(2ω+ 2�)− 2k(ω+�)− 2π/3. In conventional
quasi-phase-matched devices, the bandwidth of the generated
second harmonic is typically dominated by the group-velocity
mismatch between the fundamental and second harmonic,
1k(�)≈ 21k′�, with a corresponding scaling law for the gen-
erated second harmonic bandwidth 1λSHG ∝ 1/|1k′|L . As
discussed previously, the geometric dispersion that arises due to
tight confinement in a nanophotonic waveguide may substantially
alter1k′. Ultrabroadband interactions become possible when the
geometric dispersion of a tightly confining waveguide achieves
1k′ = 0. For the waveguides fabricated here, both1k′ and k′′ω are
small. In this case the corresponding SHG bandwidth becomes
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Fig. 3. (a) Schematic of experimental setup. ND, variable neutral
density filter; OBJ, reflective objective lens; OSA, optical spectrum
analyzer. (b) and (c) Measured spectrum of the driving polarization
(|Aω(0, �) ∗ Aω(0, �)|2) and output second harmonic (|A2ω(L, �)|2),
respectively. (d) Measured SHG transfer function (black) for a 6-mm-long
nanophotonic waveguide, showing good agreement with theory (blue).
The bandwidth of these waveguides exceeds that of bulk PPLN (orange)
by more than an order of magnitude. (e) SHG conversion efficiency and
pump depletion as a function of input pulse energy, showing 50% con-
version efficiency with an input pulse energy of 60 fJ. Inset: undepleted
regime with fit given by Eq. (3) and a heuristic model for saturation, as
described in the text.

dominated by higher-order dispersion, and1k(�)must be calcu-
lated using the full dispersion relations of the TE00 fundamental
and second harmonic modes.

The experimental setup is shown in Fig. 3(a). We character-
ize the behavior of the nanophotonic PPLN waveguides using
nearly transform-limited 50-fs-long pulses from a synchronously
pumped degenerate optical parametric oscillator (OPO). The
OPO used here is identical to that described in Ref. [23], except
that the cavity has a repetition frequency of 75 MHz. We use reflec-
tive inverse-cassegrain lenses (Thorlabs LMM-40X-P01) both
to couple into the sample and to collect the output. This ensures
that the incoupled pulses are chirp-free and that the collected har-
monics are free of chromatic aberrations. To characterize the SHG
transfer function, we record the spectrum input to the waveguide at

the fundamental and output from the waveguide at the second har-
monic. Then, we estimate AND

2ω (z, �)∝ Aω(z, �) ∗ Aω(z, �)
using the autoconvolution of the spectrum of the fundamental,
shown in Fig. 3(b). The ratio of the measured second harmonic
spectrum [Fig. 3(c)] with AND

2ω yields the measured SHG transfer
function [Fig. 3(d)], showing good agreement between experiment
and theory. These devices exhibit a 3-dB bandwidth > 110 nm,
which outperforms bulk 2-µm SHG devices of the same length
in PPLN by an order of magnitude. This broad transfer function
confirms that the waveguide achieves quasi-static interactions
of short pulses across the length of the device. Furthermore, the
strong agreement between the measured and theoretical trans-
fer function verifies the calculated waveguide dispersion. The
conversion efficiency of the second harmonic and depletion of
the fundamental input to the waveguide is shown as a function
of input pulse energy in Fig. 3(e). The inset shows the unde-
pleted regime, denoted by the dotted box in Fig. 3(e). The dotted
line is a theoretical fit of Eq. (3), where we have accounted for
a small degree of saturation at the peak of the pulse by using
AND

2ω (z, t)=−i Aω(0, t) tanh(κ Aω(0, t)z). The only fit-
ting parameter used here is a peak CW normalized efficiency of
1000%/W-cm2, which agrees well with the theoretically predicted
value of 1100%/W-cm2, and represents a 45-fold improvement
over conventional 2-µm SHG devices based on proton-exchanged
waveguides. When this large CW normalized efficiency is com-
bined with the peak field associated with a 50-fs-long pulse these
waveguides achieve 50% conversion efficiency for an input pulse
energy of only 60-fJ, which is a 30-fold reduction compared to the
state of the art [24].

4. SUPERCONTINUUM GENERATION

In this section we discuss spectral broadening by cascaded non-
linearities in a nanophotonic PPLN waveguide. We begin by
introducing a heuristic picture based on cascaded nonlinearities in
phase-mismatched SHG and discuss the role of dispersion. Based
on this heuristic picture, we show that the effective nonlinearity of
these waveguides exceeds that of conventional χ (3)-based devices,
including nanophotonic silicon waveguides. We then describe
an experimental demonstration of supercontinuum generation
(SCG) in a dispersion-engineered PPLN waveguide. The perform-
ance of these waveguides, as characterized by the pulse energies
required to generate an octave of bandwidth at multiple harmon-
ics, is an improvement over previous demonstrations in lithium
niobate by more than an order of magnitude.

In the limit of a large phase-mismatch, self-phase modulation of
the fundamental occurs due to back-action of the second harmonic
on the fundamental. This can be seen by reducing the coupled
wave equations to an effective nonlinear Schrödinger equation for
the fundamental wave [3,25]. We neglect dispersion beyond the
second order and assume the phase mismatch is sufficiently large
to satisfy two criteria: |1k| � κ A0, where A0 =max(|Aω(0, t)|),
and |1k| � 4π |1k′/τ |, where τ is the transform-limited dura-
tion of the pulse input to the waveguide. Under these conditions,
Eqs. (2a) and (2b) become

∂z Aω =
ik′′ω
2
∂2

t Aω + iγSPM|A2
ω|Aω, (4)
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whereγSPM =−η0/1k. Typically, the bounds on1k, and thus the
strength of the effective self-phase modulation, are set by the tem-
poral walkoff. This constraint is lifted when1k′ ∼ 0. For modest
values of the phase mismatch (1k ∼ 1 mm−1) and the CW nor-
malized efficiency measured previously, the effective nonlinearity
is γSPM = 100/W-m. This corresponds to an effective nonlinear
refractive index of n2 = 4.8× 10−17 m2/W. We may compare
this to the n2 associated with Kerr nonlinearities in lithium niobate
by scaling the values found in [4] with a two-band model [26].
We find n2 = 2.6× 10−19 m2/W at 2050 nm, which is nearly
200 times weaker than the self-phase modulation due to cascaded
nonlinearities. The γSPM shown here also exceeds typical values
in common nanophotonic platforms using Kerr nonlinearities.
Recent demonstrations of SCG in silicon, silicon nitride, and
lithium niobate achieved a γSPM of 38/W-m, 3.25/W-m, and
0.4/W-m, respectively [5,27,28].

In addition to an enhanced nonlinearity, phase-mismatched
SHG also generates a spectrally broadened second harmonic.
Within the approximations made here the phase mismatch is con-
stant across the bandwidth of the input pulse, 1k(�)≈1k(0),
and the second harmonic is given by

A2ω(z, t)=−iκ Aω(z, t)2(exp(i1kz)− 1)/1k. (5)

Here, the time varying phase envelope of the fundamental
directly produces a rapidly varying phase of the second harmonic,
φ2ω(z, t)∼ 2φω(z, t). Thus, we expect both harmonics to exhibit
spectral broadening as the fundamental undergoes self-phase
modulation. In practice, the full nonlinear polarization generates
a cascade of mixing processes that leads to spectral broadening of
several harmonics; a heuristic picture of this process is beyond the
scope of this paper.

We characterize SCG in a nanophotonic PPLN waveguide
with the OPO source and waveguide geometry used in the SHG
experiment; however we now choose a 5.10-µm poling period
such that1kL =−3π . We record the output spectrum from the
waveguide using three spectrometers: the visible to near-infrared
(400–900 nm) range is captured with a Ocean Optics USB4000,
the near- to mid-infrared (900–1600 nm) is captured with a
Yokogawa AQ6370C, and the mid-infrared (1600–2400 nm)
is captured using a Yokogawa AQ6375. The results are shown
in Fig. 4. The fundamental, second harmonic, and fourth har-
monic are observed for input pulse energies as low as 0.5 pJ. For
pulse energies >1 pJ, the first two harmonics undergo spectral
broadening, and we observe buildup of the third harmonic. As the
waveguide is driven with larger pulse energies, all of the observed
harmonics undergo spectral broadening. The first two harmonics
merge into a supercontinuum spanning more than an octave when
driven with 2-pJ of pulse energy. When driven with pulse energies
in excess of 10 pJ, the first five harmonics undergo spectral broad-
ening and merge together to form a supercontinuum spanning
>2.5 octaves at the−30-dB level. The measured supercontinuum
is limited to wavelengths>400 nm by the transparency window of
our collection optics and <2400 nm by our available spectrome-
ters. A photograph of the multi-octave supercontinuum is shown
in Fig. 4(b). The observed diffraction pattern is due to lateral leak-
age of visible frequencies into slab modes [29]. The evanescent tails
of these modes sample the periodic substrate damage from laser
dicing, which acts as a diffraction grating.

To characterize the coherence of this multioctave supercon-
tinuum, we measure the carrier-envelope-offset frequency ( fceo)
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Fig. 4. (a) Evolution of power spectral density over an order of mag-
nitude variation of pulse energy. Adjacent traces are displaced by 30 dB
for clarity. The different noise floors correspond to the three spectrom-
eters used, and dotted lines have been added to guide the eye where
discontinuities in these noise floors are present. (b) Photograph of super-
continuum produced with 11-pJ input to the waveguide. (c) Measured
carrier-envelope-offset beatnotes for three different values of intracavity
dispersion in the laser used to pump the OPO.

using beatnotes that arise due to the overlap of the fundamental
and second harmonic. The experimental setup is the same as for
SHG and SCG, except that the light output from the waveguide is
filtered using a Thorlabs FELH-1350 longpass filter and focused
onto a Hamamatsu C12668-02 InGaAs photoreceiver. The
recorded fceo beatnotes are shown in Fig. 4(c), alongside a 75-MHz
beatnote corresponding to the repetition frequency of the OPO.
We verify that the observed beatnotes correspond to the fceo by
tuning the fceo of the OPO in two steps: (i) we tune the fceo of the
laser used to pump the OPO by translating an intracavity prism,
and (ii) we monitor the spectrum of the OPO to verify that it main-
tains degenerate operation, and therefore remains phase-locked
to the pump laser as the fceo is tuned. We achieve a 35-dB signal-
to-noise ratio in a 3-kHz resolution bandwidth, limited by the
noise floor of the photoreceiver. Furthermore, we remark that the
intensity of the fceo beatnotes is only∼22-dB below the intensity
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Fig. 5. Power spectral density output from the chip as a function of
input pulse energy. (a) Experiment, (b) simulation. The power in dBm
is measured in 2-nm-wide spectral bins. (c) Simulated coherence of the
fundamental and second harmonic generated by a 4-pJ pulse, showing
|g (1)| ∼ 1.

of the repetition frequency beatnote. This bright relative intensity
is due to the beatnotes remaining coherent and inphase across the
entire 400-nm-wide bandwidth incident on the photodetector.

To better understand the dynamics and coherence properties
of the generated supercontinuum, we simulate Eqs. (2a) and (2b)
numerically using the split-step Fourier method described in
Ref. [30], which accounts for dispersion to the third order and
saturation. The experimentally measured and simulated spectra
output from the waveguide are shown in Figures 5(a) and 5(b),
respectively. We note that the simulation includes semiclassical
vacuum noise and that the results have been renormalized to
account for outcoupling such that the simulation and experiment
have the same peak power spectral density in the near-infrared
band (900–1600 nm) when driven with a pulse energy of 4 pJ. The
two-envelope model used here captures many of the features of the
experiment except for the buildup of the higher harmonics, which
have been explicitly neglected by considering only Aω and A2ω

in the coupled wave equations. The observed spectral broadening
agrees well with traditional heuristics derived from the nonlinear
Schrödinger equation, which confirms that this broadening is
due to a strong effective γSPM that arises from back-action of the
second harmonic on the fundamental. If we define the soliton

number as N2
= γSPMUτs /(2k′′ω), where U is the input pulse

energy, and τs = τ/1.76, then the soliton fission length is given by
L s = τ

2
s /Nk′′ω. The soliton fission length approaches the length

of the device for an input pulse energy of 1 pJ, which is the energy
at which the observed output spectra begin to exhibit spectral
broadening. Supercontinuum generation occurs for pulse ener-
gies in excess of 2 pJ. Figure 5(c) shows the simulated coherence
function, |g (1)(λ, 0)| [31], which has been calculated using an
ensemble average of 100 simulations, for an input pulse energy of
4 pJ (N= 14). The simulations shown here suggest that the spectra
are coherent over the range of pulse energies considered, with a
calculated 〈|g (1)|〉 =

∫
|g (1)(λ, 0)||A(λ)|2dλ/

∫
|A(λ)|2dλ of

0.9996 and 0.9990 for the fundamental and second harmonic,
respectively. This suggests that decoherence mechanisms that arise
due to back-action, such as modulation instabilities, are absent
for the devices under study. However, we note that the approach
used here neglects many possible decoherence mechanisms, such as
degenerate parametric fluorescence of the third harmonic. Further
theoretical and experimental study of the coherence properties of
these supercontinua will be the subject of future work.

5. CONCLUSION

We have experimentally demonstrated both SHG and SCG in a
dispersion-engineered nanophotonic PPLN waveguide. These
waveguides are shown to exceed the performance of current-
generation SHG devices by at least an order of magnitude in
phase-matching bandwidth and pulse energy requirements.
Similarly, they achieve self-phase modulation with larger
nonlinearities than nanophotonic waveguides based on χ (3)

nonlinearities. These waveguides produce coherent multioctave
supercontinua comprising multiple spectrally broadened har-
monics with at least an order of magnitude less pulse energy than
previous demonstrations in lithium niobate waveguides. These
dramatic reductions in energy requirements are made possible by
combining the dispersion engineering and large η0 available in
nanophotonic waveguides with periodically poled χ (2) nonlinear-
ities. When these techniques are combined, they achieve highly
efficient quasi-phase-matched interactions of femtosecond pulses
over long propagation lengths, thereby enabling a new class of
nonlinear photonic devices and systems.
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